d06 — Mesh Generation d06acc

NAG C Library Function Document
nag mesh2d_front (d06acc)

1 Purpose

nag mesh2d front (d06acc) generates a triangular mesh of a closed polygonal region in R?, given a mesh
of its boundary. It uses an Advancing Front process, based on an incremental method.

2 Specification

#include <nag.h>
#include <nagdO6.h>

void nag_mesh2d_front (Integer nvb, Integer nvint, Integer nvmax, Integer nedge,
const Integer edge[], Integer *nv, Integer *nelt, double coor[],
Integer conn[], const double weight[], Integer itrace, const char xoutfile,
NagError xfail)

3 Description

nag mesh2d front (d06acc) generates the set of interior vertices using an Advancing Front process, based
on an incremental method. It allows you to specify a number of fixed interior mesh vertices together with
weights which allow concentration of the mesh in their neighbourhood. For more details about the
triangulation method, consult the d06 Chapter Introduction as well as George and Borouchaki (1998).

This function is derived from material in the MODULEF package from INRIA (Institut National de
Recherche en Informatique et Automatique).

4 References

George P L and Borouchaki H (1998) Delaunay Triangulation and Meshing: Application to Finite
Elements Editions HERMES, Paris

5 Arguments
1: nvb — Integer Input
On entry: the number of vertices in the input boundary mesh.

Constraint: nvb > 3.

2: nvint — Integer Input
On entry: the number of fixed interior mesh vertices to which a weight will be applied.

Constraint: nvint > 0.

3: nvmax — Integer Input
On entry: the maximum number of vertices in the mesh to be generated.

Constraint: nvmax > nvb + nvint.

4: nedge — Integer Input
On entry: the number of boundary edges in the input mesh.
Constraint: nedge > 1.

[NP3660/8] d06acc.1

d06acc NAG C Library Manual

5:

10:

12:

13:

edge[3 x nedge| — const Integer Input

On entry: the specification of the boundary edges. edge[3 x (j — 1)] and edge[3 x (j — 1) + 1]
contain the vertex numbers of the two end points of the jth boundary edge. edge[3 x (j — 1) + 2] is
a user-supplied tag for the jth boundary edge and is not used by nag _mesh2d_front (d06acc). Note
that the edge vertices are numbered from 1 to nvb.

Constraint: 1 < edge[3 x (j—1)+i— 1] <nvb and edge[3 x (j — 1)] # edge[3 x (j— 1) + 1],
fori=1,2 and j=1,2,...,nedge.

nv — Integer * Output
On exit: the total number of vertices in the output mesh (including both boundary and interior
vertices). If nvb + nvint = nvmax, no interior vertices will be generated and nv = nvmax.

nelt — Integer * Output

On exit: the number of triangular elements in the mesh.

coor2 x nvmax| — double Input/Output

On entry: coor[2 x (i — 1)] contains the x co-ordinate of the ith input boundary mesh vertex, for
i=1,...,nvbh. coor[2 x (i — 1)] contains the x co-ordinate of the (i — nvb)th fixed interior vertex,
for i=nvb+1,...,nvb+ nvint. For boundary and interior vertices, coor[2 x (i —1)+ 1]
contains the corresponding y co-ordinate, for i = 1,...,nvb + nvint.

On exit: coor[2 x (i — 1)] will contain the x co-ordinate of the (i —nvb — nvint)th generated
interior mesh vertex, for i = nvb + nvint + 1,..., nv; while coor[2 x (i — 1) + 1] will contain the
corresponding y co-ordinate. The remaining elements are unchanged.

conn[6 x nvmax + 15] — Integer Output

On exit: the connectivity of the mesh between triangles and vertices. For each triangle j,
conn[6 X (j — 1) +i— 1] gives the indices of its three vertices (in anticlockwise order), for
i=1,2,3 and j=1,...,nelt. Note that the mesh vertices are numbered from 1 to nv.
weight[dim] — const double Input
Note: the dimension, dim, of the array weight must be at least max (1, nvint).

On entry: the weight of fixed interior vertices. It is the diameter of triangles (length of the longer
edge) created around each of the given interior vertices.

Constraint. weight[i — 1] > 0.0 if nvint > 0, for ¢ = 1,2,..., nvint.

itrace — Integer Input
On entry: the level of trace information required from nag mesh2d_front (dO6acc).
itrace < 0
No output is generated.
itrace > 1

Output from the meshing solver is printed. This output contains details of the vertices and
triangles generated by the process.

You are advised to set itrace = 0, unless you are experienced with Finite Element meshes.

outfile — const char * Input
On entry: the name of a file to which diagnostic output will be directed. If outfile is NULL the
diagnostic output will be directed to standard output.

fail — NagError * Input/Output

The NAG error argument (see Section 2.6 of the Essential Introduction).

d06acc.2 [NP3660/8]

d06 — Mesh Generation d06acc

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD PARAM

On entry, argument (value) had an illegal value.

NE_INT

On entry, nedge = (value).
Constraint: nedge > 1.

On entry, nvb = (value).
Constraint: nvb > 3.

On entry, nvint = (value).
Constraint: nvint > 0.

NE_INT_2

On entry, the endpoints of the edge j have the same index i: j = (value), i = (value).
NE_INT 3

On entry, nvb + nvint > nvmax: nv = (value), nvint = (value), nvmax = (value).
NE_INT 4

On entry, edge(i,j) < 1 or edge(i,j) > nvb, where edge(i,j) denotes edge[3 x (j —1)+i— 1]
edge(i,j) = (value), i = (value), j = (value), nvb = (value).

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

NE_MESH_ERROR

An error has occurred during the generation of the interior mesh. Check the inputs of the boundary.

NE_NOT_CLOSE_FILE

Cannot close file (value).

NE_NOT_WRITE_FILE

Cannot open file (value) for writing.

NE_REAL_ARRAY_ INPUT
On entry, weight[i — 1] < 0.0: weight[i — 1] = (value), i = (value).

7 Accuracy

Not applicable.
8 Further Comments

The position of the internal vertices is a function position of the vertices on the given boundary. A fine
mesh on the boundary results in a fine mesh in the interior. During the process vertices are generated on

[NP3660/8] d06acc.3

d06acc NAG C Library Manual

edges of the mesh 7, to obtain the mesh 7, in the general incremental method (consult the d06 Chapter
Introduction or George and Borouchaki (1998)).

You are advised to take care to set the boundary inputs properly, especially for a boundary with multiply
connected components. The orientation of the interior boundaries should be in clockwise order and
opposite to that of the exterior boundary. If the boundary has only one connected component, its
orientation should be anticlockwise.

9 Example

In this example, a geometry with two holes (two wings inside an exterior circle) is meshed using a
Delaunay—Voronoi method. The exterior circle is centred at the point (1.5,0.0) with a radius 4.5, the first
wing begins at the origin and it is normalized, finally the last wing is also normalized and begins at the
point (0.8, —0.3). To be able to carry out some realistic computation on that geometry, some interior
points have been introduced to have a finer mesh in the wake of those airfoils.

The boundary mesh has 120 vertices and 120 edges (see Figure 1 top). Note that the particular mesh
generated could be sensitive to the machine precision and therefore may differ from one implementation to
another. Contains the generated mesh Figure 1.

9.1 Program Text

/* nag_mesh2d_front (dO6acc) Example Program.
Copyright 2001 Numerical Algorithms Group.

*
*
*
* Mark 7, 2001.

* Mark 7b revised, 2004.

*/

#include <math.h>
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagd06.h>

/* Structure to allow data to be passed onto =*/
/* the nag_mesh2d_bound (dO6bac) user-supplied function fbnd */

struct user

{
/* details of the double NACA0012 and the circle around it =*/

double x0, yO0, x1, y1l, radius;
}i
static double fbnd(Integer, double, double, Nag_Comm *);

#define EDGE(I,J) edge[3*((J
#define LINED(I,J) lined[4x*(
#define CONN(I,J) conn[3*((J
#define COOR(I,J) coor[2*((J
#define COORCH(I,J) coorchl|

[

)
(
)
)
*
#define COORUS(I,J) coorus[2%*

2% (
2% (

int main(void)

{
const Integer nus=1, nvmax=2000, nedmx=200, nvint=40;
struct user geom_Naca;
double dnvint, radius, x0, x1, y0, yl;
Integer exit_status, i, itrace, j, k, 1, ncomp, nedge, nelt, nlines,

nv, nvb, nvint2, reftk;

char pmesh([2];
double #*coor=0, *coorch=0, #*coorus=0, *rate=0, =*weight=0;
Integer *conn=0, *edge=0, *lcomp=0, *1lined=0, *nlcomp=0;
NagError fail;
Nag_Comm comm;

d06acc.4 [NP3660/8]

d06 — Mesh Generation d06acc

INIT_FAIL(fail);
exit_status = 0;

Vprintf (" nag_mesh2d_front (dO6acc) Example Program Results\n\n");
/* Skip heading in data file #*/

Vscanf ([*\n] ");

/* Initialise boundary mesh inputs: the number of lines and */

/* the number of characteristic points of the boundary mesh */

Vscanf ("%1d", &nlines);
Vscanf ("s*["\n] ");

/* Allocate memory */

if (!(coor = NAG_ALLOC(2*nvmax, double)) ||
! (coorch = NAG_ALLOC(2*nlines, double)) ||
! (coorus = NAG_ALLOC(2*nus, double)) ||
! (rate = NAG_ALLOC(nlines, double)) ||
! (weight = NAG_ALLOC(nvint, double)) ||
! (conn = NAG_ALLOC(3#*(2*nvmax+5), Integer)) ||
! (edge = NAG_ALLOC(3*nedmx, Integer)) ||
! (lined = NAG_ALLOC(4*nlines, Integer)) ||
! (lcomp = NAG_ALLOC(nlines, Integer)))
{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;
}

/* The double NACA0012 and the circle around it #*/

for (j = 1; j <= nlines; ++j) Vscanf("%1f", &COORCH(1l,3j));
Vscanf ("$x["\n] ");
for (j = 1; j <= nlines; ++j) Vscanf ("%1f", &COORCH(2,3));
Vscanf ("s*x["\n] ");

/* The lines of the boundary mesh =*/

for (j = 1; j <= nlines; ++3j)
{
for (i = 1; i <= 4; ++i) Vscanf("%14d", &LINED(i,3));
Vscanf ("s1f", &ratel[j-11);
}

Vscanf ([*\n] ");

/* The number of connected components to #*/
/* the boundary and their information =*/

Vscanf ("%1d", &ncomp) ;
Vscanf ("%s*["\n] ");

/* Allocate memory */

if (! (nlcomp = NAG_ALLOC (ncomp, Integer)))

{
Vprintf ("Allocation failure\n")
exit_status = -1;
goto END;

j = 0;
for (i = 0; i < ncomp; ++1i)
Vscanf ("%1d", &nlcompl[il]);

Vscanf ("sx["\n] ");

[NP3660/8] d06acc.5

d06acc NAG C Library Manual

1 =3 + abs(nlcomp[i]);

++k) Vscanf ("%1d", &lcompl[kl]);

"5,-

j += abs(nlcompl[i]);
}

Vscanf (" ' %1s ’'%*[*\nl]", pmesh);

/* Data passed to the user-supplied function =*/

comm.p = (Pointer)

geom_Naca.x0 = x0;
geom_Naca.y0 = yO;
geom_Naca.radius = radius;
geom_Naca.xl = x1;
geom_Naca.yl = y1;

itrace = 0;
/* Call to the 2D boundary mesh generator #*/

/* nag_mesh2d_bound (dOobac).
* Generates a boundary mesh
*/
nag_mesh2d_bound(nlines, coorch, lined, fbnd, coorus, nus, rate, ncomp,
nlcomp, lcomp, nvmax, nedmx, &nvb, coor, &nedge, edge,
itrace, 0, &comm, &fail);

if (fail.code == NE_NOERROR)
{
if (pmesh[0] == 'N’)
{
Vprintf (" Boundary mesh characteristics\n");
Vprintf (" nvb =%61d\n", nvb);
Vprintf (" nedge =%61d\n", nedge) ;
}
else if (pmesh([0] == ’'Y’)
{
/* Output the mesh to view it using the NAG Graphics Library */
Vprintf (" %101d %101ld\n", nvb, nedge);
for (i = 1; i <= nvb; ++1i)
Vprintf (" %41d %12.6e %12.6e \n",
i, COOR(1,i), COOR(2,1));
for (i = 1; i <= nedge; ++1i)
Vprintf (" %414 %414 %414 %41d4d\n",
i, EDGE(1,1i), EDGE(2,1), EDGE(3,1i));
}
else
{
Vprintf ("Problem with the printing option Y or N\n");
exit_status = -1;
goto END;
}
¥
else
{

Vprintf ("Error from nag_mesh2d_bound (dOe6bac).\n%s\n", fail.message);

d06ace.6 [NP3660/8]

d06 — Mesh Generation

exit_status = 1;
goto END;
}

/* Initialise mesh control parameters =*/
itrace = 0;

/* Generation of interior vertices */
/* for the wake of the first NACA */

nvint2 = nvint/2;
dnvint = 5.0/(nvint2 + 1.0);

for (i = 1; i <= nvint2; ++1)
{
reftk = nvb + 1i;
COOR(1, reftk) = i*dnvint + 1.0;
COOR(2, reftk) = 0.0;
weight[i-1] = 0.05;
}

/* for the wake of the second one #*/
dnvint = 4.19/(nvint2 + 1.0);

for (i = nvint2+1l; i <= nvint; ++1i)
{
reftk = nvb + i;
COOR(1l, reftk) = (i - nvint2)=*dnvint + 1.8;
COOR(2, reftk) = -0.3;
weight[i-1] = 0.05;
}

/* Call to the 2D Advancing front mesh generator */

/* nag_mesh2d_front (dOcacc).
* Generates a two-dimensional mesh using an Advancing-front
* method
*/
nag_mesh2d_front(nvb, nvint, nvmax, nedge, edge, &nv, &nelt,
coor, conn, weight, itrace, 0, &fail);

if (fail.code == NE_NOERROR)
{
if (pmesh[0] == 'N’)
{
Vprintf (" Complete mesh characteristics\n");
Vprintf (" nv =%61d\n", nv);
Vprintf (" nelt =%61d\n", nelt);
3
else if (pmesh[0] == 'Y")
{

/* Output the mesh to view it using the NAG Graphics Library *x/
Vprintf (" %101d %101d\n", nv, nelt);

for (i = 1; i <= nv; ++1)
Vprintf (" %12.6e %12.6e\n", COOR(1l,i), COOR(2,1i));

reftk = 0;
for (k = 1; k <= nelt; ++k)
Vprintf (" %101d4%101d%101d4%101d\n",
CONN(1,k), CONN(2,k), CONN(3,k), reftk);

}
else
{
Vprintf ("Problem with the printing option Y or N\n");
exit_status = -1;
goto END;
}

[NP3660/8]

d06acc

d06acc.7

d06acc NAG C Library Manual

}
else
{
Vprintf ("Error from nag_mesh2d_front (dO6acc).\n%s\n", fail.message) ;
exit_status = 1;
goto END;
}
END:
if (coor) NAG_FREE(coor);
if (coorch) NAG_FREE (coorch);
if (coorus) NAG_FREE (coorus);
if (rate) NAG_FREE(rate);
if (weight) NAG_FREE (weight) ;
if (conn) NAG_FREE (conn) ;
if (edge) NAG_FREE (edge);
if (lcomp) NAG_FREE (lcomp) ;
if (lined) NAG_FREE (lined);
(

if (nlcomp) NAG_FREE (nlcomp) ;
return exit_status;
}
static double fbnd(Integer i, double x, double y, Nag_Comm *pcomm)
{
double ret_val;
double ¢, radius, x0, x1, yO, yl;
struct user #*geom Naca = (struct user *)pcomm->p;

x0 = geom_Naca->x0;
y0 = geom_Naca->y0;
radius = geom_Naca->radius;
x1 = geom_Naca->x1;
vyl = geom_Naca->yl;

ret_val = 0.0;

switch (1)

{
case 1:
/* upper NACAOO0l2 wing beginning at the origin =*/
c = 1.008930411365;
ret_val = 0.6%(0.2969*sqrt(c*x) - 0.126*(c*x) - 0.3516*pow(c*x,2.0)
+ 0.2843*pow(c*x,3.0) - 0.1015*pow(c*x,4.0)) - c*y;
break;
case 2:
/* lower NACAOOl2 wing beginning at the origin =*/
c = 1.008930411365;
ret_val = 0.6%(0.2969*sqrt(c*x) - 0.126*(c*x) - 0.3516*pow(c*x,2.0)
+ 0.2843*pow(c*x,3.0) - 0.1015*pow(c*x,4.0)) + c*y;
break;
case 3:
/* the circle around the double NACA x/
ret_val = (x-x0)*(x-x0) + (y-y0)#*(y-y0) - radius*radius;
break;
case 4:

/* upper NACAOO0l2 wing beginning at (X1;Y1) =*/

c = 1.008930411365;

d06acc.8 [NP3660/8]

d06 — Mesh Generation d06acc

ret_val = 0.6%(0.2969*sqrt(c*x(x-x1)) - 0.126%c*(x-x1) -
0.3516*pow(c*(x-x1),2.0) + 0.2843*pow(c*(x-x1),3.0) -
0.1015*pow(c*(x-x1),4.0)) - cx(y-yl);

break;

case 5:
/* lower NACAOOl2 wing beginning at (X1;Y1l) =*/
c = 1.008930411365;
ret_val = 0.6%(0.2969*sqgrt(c*x(x-x1)) - 0.126*(c*(x-x1)) -
0.3516*pow(c*(x-x1),2.0) + 0.2843*pow(c*(x-x1),3.0) -
0.1015*pow(c*(x-x1),4.0)) + c*x(y-yl);

break;

}

return ret_val;

}

9.2 Program Data

nag_mesh2d_front (dO6acc) Example Program Data

8 :NLINES (m)
0.0000 1.0000 -=3.0000 6.0000 0.8000
1.8000 1.5000 1.5000 : (COORCH(1,1:m))
0.0000 0.0000 0.0000 0.0000 -0.3000

-0.3000 4.5000 -4.5000 : (COORCH(2,1:m))

21 2 1 1 1.0000 21 1 2 2 1.0000

11 3 8 3 1.0000 11 4 7 3 1.0000

21 o6 5 4 1.0000 21 5 © 5 1.0000

11 7 3 3 1.0000 11 8 4 3 1.0000 :(LINE(:,3j),RATE(]),j=1,m)
3 :NCOMP (n, number of contours)

-2 :number of lines in contour 1
1 2 :lines of contour 1
4 :number of lines in contour 2
3 8 4 7 :lines of contour 2

-2 :number of lines in contour 3
5 o6 :lines of contour 3

N’ :Printing option 'Y’ or ’'N’

9.3 Program Results

nag_mesh2d_front (dO6acc) Example Program Results

Boundary mesh characteristics

nvb = 120

nedge = 120

Complete mesh characteristics
nv = 1892

nelt = 3666

[NP3660/8] d06acc.9

d06acc NAG C Library Manual

VAV%V:

Y/

\)
D

LR
STH
e

Figure 1
The boundary mesh (top), the interior mesh (bottom) of a
double wing inside a circle geometry

d06acc.10 (last) [NP3660/8]

	d06acc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	nvb
	nvint
	nvmax
	nedge
	edge
	nv
	nelt
	coor
	conn
	weight
	itrace
	outfile
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT
	NE_INT_2
	NE_INT_3
	NE_INT_4
	NE_INTERNAL_ERROR
	NE_MESH_ERROR
	NE_NOT_CLOSE_FILE
	NE_NOT_WRITE_FILE
	NE_REAL_ARRAY_INPUT

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

